How to Build a Text-to-Speech (TTS) Application Using Python and SQLite
In this article, we’ll walk through how to build a basic Text-to-Speech (TTS) system using Python, the TTS library, and SQLite to store and manage tasks. The steps involve setting up the Python environment, installing necessary dependencies, working with pre-trained TTS models, and storing tasks in a SQLite database for batch processing.
Related articles
Python and Visual Studio Code setup
How to Set Up a Text-to-Speech Project with XTTS Model
Step 1: Set Up the Python Environment
To begin, make sure you’re using Python version 3.9.6 or higher. Use a virtual environment for isolating dependencies and keeping your environment clean.
# Check Python version
python --version
# Set up a virtual environment
python -m venv venv
# Activate the virtual environment
venv/Scripts/activate
# Upgrade pip to the latest version
python.exe -m pip install --upgrade pip
Step 2: Install Required Dependencies
The next step involves installing various libraries required for our project. This includes TTS (for text-to-speech processing), Torch (for neural network handling), and others like Soundfile for handling audio files.
# Install TTS library
pip install TTS --cache-dir "D:/internship/tts/.cache"
# Uninstall pre-existing versions of Torch
pip uninstall torch torchvision torchaudio
# Install specific versions of Torch and related libraries
pip install transformers datasets torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --cache-dir "D:/internship/tts/.cache"
# Optionally, install CUDA if you want GPU support
https://developer.nvidia.com/cuda-downloads
# Install soundfile library to handle audio
pip install soundfile --cache-dir "D:/internship/tts/.cache"
# Install DeepSpeed for optimization (optional)
pip install deepspeed==0.10.3 --cache-dir "D:/internship/tts/.cache"
Step 3: Load the TTS Model
Now that the environment is set up, we will proceed by loading the TTS model and using it to synthesize speech. The pre-trained TTS model can be configured using the XttsConfig
class.
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
import soundfile as sf
# Load the model configuration
config = XttsConfig()
config.load_json("D:/internship/tts/assets/tts_configs/config.json")
# Initialize the model
model = Xtts.init_from_config(config)
# Load pre-trained weights
model.load_checkpoint(config, checkpoint_dir="D:/internship/tts/assets/tts_configs", eval=True)
# Optional: Use GPU with CUDA
# model.cuda()
Step 4: Convert Text to Speech
We now create a function convertTTS()
that converts text into speech and saves the output as a .wav
file.
def convertTTS(text, input_audio, output_audio):
outputs = model.synthesize(
text,
config,
speaker_wav=input_audio, # Path to the input wav file
gpt_cond_len=3,
language="en",
)
# Save the synthesized speech to a wav file
output_wav = outputs['wav']
sf.write(output_audio, output_wav, config.audio.sample_rate)
print("Speech synthesis complete and saved to output.wav")
Step 5: Manage Tasks with SQLite
To manage the text data we want to convert, we’ll use SQLite. In this example, a SQLite database will store the tasks, each containing a text field that the TTS system will convert into speech.
- Create the database and table:
import sqlite3
conn = sqlite3.connect('tts.db')
cursor = conn.cursor()
def createTable():
cursor.execute('''CREATE TABLE IF NOT EXISTS tasks (
id INTEGER PRIMARY KEY AUTOINCREMENT,
text TEXT NOT NULL
)''')
conn.commit()
2. Insert tasks into the database:
def createTask(text):
cursor.execute('''INSERT INTO tasks (text) VALUES (?)''', (text,))
conn.commit()
3. Fetch tasks from the database:
def fetchTasks():
cursor.execute('SELECT * FROM tasks')
return cursor.fetchall()
4. Process each task and convert it to speech: For each task, we retrieve the text and process it through the convertTTS()
function.
for task in fetchTasks():
convertTTS(task[1], 'input.wav', str(task[0]) + '.wav')
# Close the connection after processing
conn.close()
Basic setup for TTS database and tasks table
import sqlite3
# Connect to database (or create if it doesn't exist)
conn = sqlite3.connect('tts.db')
# Create a cursor object
cursor = conn.cursor()
# Create a table (if it doesn't exist)
cursor.execute('''CREATE TABLE IF NOT EXISTS tasks (
id INTEGER PRIMARY KEY AUTOINCREMENT,
text TEXT NOT NULL
)''')
# Commit the changes
conn.commit()
# Insert a user into the table
cursor.execute('''INSERT INTO tasks (text)
VALUES (?)''', ('hello how are you?',))
# Commit the changes
conn.commit()
# Fetch all rows from the users table
cursor.execute('SELECT * FROM tasks')
rows = cursor.fetchall()
# Display the rows
for row in rows:
print(row)
# Close the connection
conn.close()
Complete code
# python version 3.9.6
# python --version
# python -m venv venv
# venv/Scripts/activate
# python.exe -m pip install --upgrade pip
# pip install TTS --cache-dir "D:/internship/tts/.cache"
# pip uninstall torch torchvision torchaudio
# pip install transformers datasets torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --cache-dir "D:/internship/tts/.cache"
# https://developer.nvidia.com/cuda-downloads
# pip install soundfile --cache-dir "D:/internship/tts/.cache"
# pip install deepspeed==0.10.3 --cache-dir "D:/internship/tts/.cache" optional
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
import soundfile as sf # To save the output as a wav file
# Step 1: Load the model configuration
config = XttsConfig()
config.load_json("D:/internship/tts/assets/tts_configs/config.json")
# Step 2: Initialize the model
model = Xtts.init_from_config(config)
# Step 3: Load the pre-trained weights
model.load_checkpoint(config, checkpoint_dir="D:/internship/tts/assets/tts_configs", eval=True)
# Optional: If you have CUDA installed and want to use GPU, uncomment the line below
# model.cuda()
# Step 4: Synthesize the output
def convertTTS(text, input_audio, output_audio):
outputs = model.synthesize(
text,
config,
speaker_wav=input_audio, # Replace with the correct path
gpt_cond_len=3,
language="en",
)
# Step 5: Save the synthesized speech to a wav file
output_wav = outputs['wav']
sf.write(output_audio, output_wav, config.audio.sample_rate)
print("Speech synthesis complete and saved to output.wav")
import sqlite3
conn = sqlite3.connect('tts.db')
# Create a cursor object
cursor = conn.cursor()
def createTable():
# Create a table (if it doesn't exist)
cursor.execute('''CREATE TABLE IF NOT EXISTS tasks (
id INTEGER PRIMARY KEY AUTOINCREMENT,
text TEXT NOT NULL
)''')
# Commit the changes
conn.commit()
def createTask(text):
# Insert a user into the table
cursor.execute('''INSERT INTO tasks (text)
VALUES (?)''', (text,))
# Commit the changes
conn.commit()
def fetchTasks():
# Fetch all rows from the users table
cursor.execute('SELECT * FROM tasks')
return cursor.fetchall()
# print(fetchTasks())
for task in fetchTasks():
convertTTS(task[1], 'input.wav', str(task[0]) + '.wav')
# Close the connection
conn.close()
Conclusion
In this project, we demonstrated how to build a basic TTS application using Python. We walked through the process of setting up the environment, installing required dependencies, loading a pre-trained TTS model, and processing text tasks stored in a SQLite database.
This is just a starting point—there are many ways to extend and improve this system, such as adding a user interface, supporting multiple languages, or using GPU acceleration for faster processing.
Feel free to experiment with the code and take your text-to-speech application to the next level!